Aunali revidoval tento gist 1 month ago. Přejít na revizi
1 file changed, 852 insertions
practicals.txt(vytvořil soubor)
| @@ -0,0 +1,852 @@ | |||
| 1 | + | =============================================================================== | |
| 2 | + | MACHINE LEARNING PRACTICALS - JOURNAL | |
| 3 | + | =============================================================================== | |
| 4 | + | ||
| 5 | + | =============================================================================== | |
| 6 | + | PRACTICAL 1: FEATURE ENGINEERING AND DATA PREPROCESSING | |
| 7 | + | (Handling missing values, Encoding categorical variables, Scaling features) | |
| 8 | + | =============================================================================== | |
| 9 | + | ||
| 10 | + | ------- 1.1: ENCODING (encoding.py) ------- | |
| 11 | + | ||
| 12 | + | CODE: | |
| 13 | + | import pandas as pd | |
| 14 | + | from sklearn.preprocessing import OrdinalEncoder | |
| 15 | + | from sklearn.model_selection import train_test_split | |
| 16 | + | from sklearn.preprocessing import LabelEncoder | |
| 17 | + | from sklearn.preprocessing import OneHotEncoder | |
| 18 | + | ||
| 19 | + | df=pd.read_csv("customer.csv") | |
| 20 | + | print(df) | |
| 21 | + | ||
| 22 | + | df1=df.iloc[:,2:] | |
| 23 | + | print(df1) | |
| 24 | + | ||
| 25 | + | x_train,x_test,y_train,y_test=train_test_split(df1.iloc[:,0:2],df1.iloc[:,-1],test_size=0.1) | |
| 26 | + | print("XTrain: \n",x_train) | |
| 27 | + | print("Ytrain: \n",y_train) | |
| 28 | + | print("XTEST: \n",x_test) | |
| 29 | + | print("YTEST: \n",y_test) | |
| 30 | + | ||
| 31 | + | #ordinal Encoding | |
| 32 | + | oe=OrdinalEncoder(categories=[['Poor','Average','Good'],['HSC','UG','PG']]) | |
| 33 | + | oe.fit(x_train) | |
| 34 | + | x_train=oe.transform(x_train) | |
| 35 | + | x_test=oe.transform(x_test) | |
| 36 | + | print(x_train) | |
| 37 | + | ||
| 38 | + | #Label Encoder | |
| 39 | + | le=LabelEncoder() | |
| 40 | + | le.fit(y_train) | |
| 41 | + | y_train=le.transform(y_train) | |
| 42 | + | y_test=le.transform(y_test) | |
| 43 | + | print(y_train) | |
| 44 | + | ||
| 45 | + | #Onehot Encoding using pandas | |
| 46 | + | df2=df.iloc[:,1:2] | |
| 47 | + | encod=OneHotEncoder(sparse_output=False) | |
| 48 | + | encoded=encod.fit_transform(df2) | |
| 49 | + | print("Feature Names:") | |
| 50 | + | print(encod.get_feature_names_out()) | |
| 51 | + | print(encoded) | |
| 52 | + | ||
| 53 | + | OUTPUT: | |
| 54 | + | age Gender review education Purchase | |
| 55 | + | 0 NaN Male Good HSC yes | |
| 56 | + | 1 48.0 Male Good PG no | |
| 57 | + | 2 68.0 Female Average UG no | |
| 58 | + | 3 77.0 Female Average PG yes | |
| 59 | + | 4 26.0 Male Poor PG yes | |
| 60 | + | ... | |
| 61 | + | [14 rows x 5 columns] | |
| 62 | + | ||
| 63 | + | review education Purchase | |
| 64 | + | 0 Good HSC yes | |
| 65 | + | 1 Good PG no | |
| 66 | + | 2 Average UG no | |
| 67 | + | 3 Average PG yes | |
| 68 | + | ... | |
| 69 | + | [14 rows x 3 columns] | |
| 70 | + | ||
| 71 | + | XTrain: | |
| 72 | + | review education | |
| 73 | + | 3 Average PG | |
| 74 | + | 8 Good UG | |
| 75 | + | 6 Good PG | |
| 76 | + | 2 Average UG | |
| 77 | + | ... | |
| 78 | + | [12 rows x 2 columns] | |
| 79 | + | ||
| 80 | + | Ytrain: | |
| 81 | + | 3 yes | |
| 82 | + | 8 yes | |
| 83 | + | 6 yes | |
| 84 | + | 2 no | |
| 85 | + | ... | |
| 86 | + | Name: Purchase, dtype: object | |
| 87 | + | ||
| 88 | + | XTEST: | |
| 89 | + | review education | |
| 90 | + | 5 Good UG | |
| 91 | + | 13 Good UG | |
| 92 | + | ||
| 93 | + | YTEST: | |
| 94 | + | 5 no | |
| 95 | + | 13 yes | |
| 96 | + | Name: Purchase, dtype: object | |
| 97 | + | ||
| 98 | + | [[1. 2.] | |
| 99 | + | [2. 1.] | |
| 100 | + | [2. 2.] | |
| 101 | + | [1. 1.] | |
| 102 | + | ... | |
| 103 | + | [0. 2.]] | |
| 104 | + | ||
| 105 | + | [1 1 1 0 0 0 0 1 1 1 1 1] | |
| 106 | + | ||
| 107 | + | Feature Names: | |
| 108 | + | ['Gender_Female' 'Gender_Male'] | |
| 109 | + | ||
| 110 | + | [[0. 1.] | |
| 111 | + | [0. 1.] | |
| 112 | + | [1. 0.] | |
| 113 | + | [1. 0.] | |
| 114 | + | ... | |
| 115 | + | [1. 0.]] | |
| 116 | + | ||
| 117 | + | ------- 1.2: BOXPLOT AND HISTOGRAM (boxplot.py) ------- | |
| 118 | + | ||
| 119 | + | CODE: | |
| 120 | + | import matplotlib.pyplot as plt | |
| 121 | + | import numpy as np | |
| 122 | + | arr=np.array([100,120,110,150,110,140,130,170,120,220,140,110]) | |
| 123 | + | arr1=np.sort(arr) | |
| 124 | + | print(arr1) | |
| 125 | + | mean=np.mean(arr) | |
| 126 | + | print("MEAN=",mean) | |
| 127 | + | median=np.median(arr) | |
| 128 | + | print("MEDIAN=",median) | |
| 129 | + | q1=np.percentile(arr,25) | |
| 130 | + | print("Quarter 1=",q1) | |
| 131 | + | q3=np.percentile(arr1,75) | |
| 132 | + | print("Quarter 3=",q3) | |
| 133 | + | plt.boxplot(arr) | |
| 134 | + | plt.show() | |
| 135 | + | plt.hist(arr) | |
| 136 | + | plt.show() | |
| 137 | + | ||
| 138 | + | OUTPUT: | |
| 139 | + | [100 110 110 110 120 120 130 140 140 150 170 220] | |
| 140 | + | MEAN= 135.0 | |
| 141 | + | MEDIAN= 125.0 | |
| 142 | + | Quarter 1= 110.0 | |
| 143 | + | Quarter 3= 142.5 | |
| 144 | + | ||
| 145 | + | ------- 1.3: CORRELATION WITH TARGET (corela_target.py) ------- | |
| 146 | + | ||
| 147 | + | CODE: | |
| 148 | + | import pandas as pd | |
| 149 | + | ||
| 150 | + | data = { | |
| 151 | + | 'sqft': [1500, 1600, 1700, 1800, 1900], | |
| 152 | + | 'rooms': [3, 3, 4, 4, 5], | |
| 153 | + | 'roof_color': [1, 2, 1, 2, 1], | |
| 154 | + | 'price': [300000, 320000, 340000, 360000, 380000] | |
| 155 | + | } | |
| 156 | + | ||
| 157 | + | df = pd.DataFrame(data) | |
| 158 | + | correlation_matrix = df.corr(numeric_only=True) | |
| 159 | + | print("🔁 Full Correlation Matrix:") | |
| 160 | + | print(correlation_matrix.round(2)) | |
| 161 | + | ||
| 162 | + | correlation = df.corr()['price'].drop('price') | |
| 163 | + | print(correlation) | |
| 164 | + | ||
| 165 | + | selected_features = correlation[correlation.abs() > 0.3].index | |
| 166 | + | print("Selected features:", list(selected_features)) | |
| 167 | + | ||
| 168 | + | OUTPUT: | |
| 169 | + | 🔁 Full Correlation Matrix: | |
| 170 | + | sqft rooms roof_color price | |
| 171 | + | sqft 1.00 0.94 0.00 1.00 | |
| 172 | + | rooms 0.94 1.00 -0.33 0.94 | |
| 173 | + | roof_color 0.00 -0.33 1.00 0.00 | |
| 174 | + | price 1.00 0.94 0.00 1.00 | |
| 175 | + | ||
| 176 | + | sqft 1.000000e+00 | |
| 177 | + | rooms 9.449112e-01 | |
| 178 | + | roof_color 5.250970e-17 | |
| 179 | + | Name: price, dtype: float64 | |
| 180 | + | ||
| 181 | + | Selected features: ['sqft', 'rooms'] | |
| 182 | + | ||
| 183 | + | ------- 1.4: COLUMN TRANSFORMER ENCODING (column_trans_encod.py) ------- | |
| 184 | + | ||
| 185 | + | CODE: | |
| 186 | + | import pandas as pd | |
| 187 | + | from sklearn.model_selection import train_test_split | |
| 188 | + | from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder,LabelEncoder | |
| 189 | + | from sklearn.compose import ColumnTransformer | |
| 190 | + | from sklearn.impute import SimpleImputer | |
| 191 | + | ||
| 192 | + | df = pd.read_csv("customer.csv") | |
| 193 | + | print(df) | |
| 194 | + | ||
| 195 | + | x=df.iloc[:,:4] | |
| 196 | + | y=df.iloc[:,-1] | |
| 197 | + | ||
| 198 | + | x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.1) | |
| 199 | + | ||
| 200 | + | trans = ColumnTransformer( | |
| 201 | + | transformers=[ | |
| 202 | + | ('impute_age', SimpleImputer(), ['age']), | |
| 203 | + | ('onehot_gender', OneHotEncoder(sparse_output=False), ['Gender']), | |
| 204 | + | ('ordinal_rating', OrdinalEncoder(categories=[['Poor', 'Average', 'Good']]), ['review']), | |
| 205 | + | ('ordinal_education', OrdinalEncoder(categories=[['HSC', 'UG', 'PG']]), ['education']) | |
| 206 | + | ], | |
| 207 | + | remainder='passthrough' | |
| 208 | + | ) | |
| 209 | + | ||
| 210 | + | x_train = trans.fit_transform(x_train) | |
| 211 | + | x_test =trans.fit_transform(x_test) | |
| 212 | + | print("\nTransformed XTrain:\n", x_train) | |
| 213 | + | print("\nTransformed XTest:\n", x_test) | |
| 214 | + | ||
| 215 | + | le=LabelEncoder() | |
| 216 | + | y_train1=le.fit_transform(y_train) | |
| 217 | + | y_test1=le.fit_transform(y_test) | |
| 218 | + | print("\nTransformed YTrain:\n", y_train1) | |
| 219 | + | print("\nTransformed YTest:\n", y_test1) | |
| 220 | + | ||
| 221 | + | OUTPUT: | |
| 222 | + | age Gender review education Purchase | |
| 223 | + | 0 NaN Male Good HSC yes | |
| 224 | + | 1 48.0 Male Good PG no | |
| 225 | + | 2 68.0 Female Average UG no | |
| 226 | + | 3 77.0 Female Average PG yes | |
| 227 | + | 4 26.0 Male Poor PG yes | |
| 228 | + | ... | |
| 229 | + | [14 rows x 5 columns] | |
| 230 | + | ||
| 231 | + | Transformed XTrain: | |
| 232 | + | [[55. 0. 1. 0. 2.] | |
| 233 | + | [18. 0. 1. 2. 1.] | |
| 234 | + | [44. 0. 1. 2. 1.] | |
| 235 | + | [50. 1. 0. 2. 1.] | |
| 236 | + | ... | |
| 237 | + | [26. 0. 1. 0. 2.]] | |
| 238 | + | ||
| 239 | + | Transformed XTest: | |
| 240 | + | [[77. 1. 2. 0.] | |
| 241 | + | [77. 1. 1. 2.]] | |
| 242 | + | ||
| 243 | + | Transformed YTrain: | |
| 244 | + | [1 0 1 1 1 0 1 0 0 0 1 1] | |
| 245 | + | ||
| 246 | + | Transformed YTest: | |
| 247 | + | [0 0] | |
| 248 | + | ||
| 249 | + | ------- 1.5: CORRELATION BETWEEN FEATURES (corel_bt_feat.py) ------- | |
| 250 | + | ||
| 251 | + | CODE: | |
| 252 | + | import pandas as pd | |
| 253 | + | ||
| 254 | + | data = { | |
| 255 | + | 'sqft': [1500, 1600, 1700, 1800, 1900], | |
| 256 | + | 'rooms': [3, 3, 4, 4, 5], | |
| 257 | + | 'bathrooms': [1, 2, 2, 2, 3], | |
| 258 | + | 'roof_color': [1, 2, 1, 2, 1], | |
| 259 | + | 'price': [300000, 320000, 340000, 360000, 380000] | |
| 260 | + | } | |
| 261 | + | df = pd.DataFrame(data) | |
| 262 | + | feature_corr = df.drop(columns='price').corr() | |
| 263 | + | print("Correlation between features:") | |
| 264 | + | print(feature_corr.round(2)) | |
| 265 | + | ||
| 266 | + | OUTPUT: | |
| 267 | + | Correlation between features: | |
| 268 | + | sqft rooms bathrooms roof_color | |
| 269 | + | sqft 1.00 0.94 0.89 0.00 | |
| 270 | + | rooms 0.94 1.00 0.85 -0.33 | |
| 271 | + | bathrooms 0.89 0.85 1.00 0.00 | |
| 272 | + | roof_color 0.00 -0.33 0.00 1.00 | |
| 273 | + | ||
| 274 | + | ||
| 275 | + | =============================================================================== | |
| 276 | + | PRACTICAL 2: PRINCIPAL COMPONENT ANALYSIS (PCA) | |
| 277 | + | (Dimensionality Reduction while retaining maximum variance) | |
| 278 | + | =============================================================================== | |
| 279 | + | ||
| 280 | + | CODE: | |
| 281 | + | import pandas as pd | |
| 282 | + | import numpy as np | |
| 283 | + | from sklearn.preprocessing import StandardScaler | |
| 284 | + | ||
| 285 | + | df=pd.read_csv("student_dataset.csv") | |
| 286 | + | print(df) | |
| 287 | + | ||
| 288 | + | scaler=StandardScaler() | |
| 289 | + | df1=scaler.fit_transform(df.iloc[:,:3]) | |
| 290 | + | print(df1) | |
| 291 | + | ||
| 292 | + | cov_matrix = np.cov(df1.T) | |
| 293 | + | print("COVARIANCE MATRIX:\n", cov_matrix) | |
| 294 | + | ||
| 295 | + | eig_val,eig_vect=np.linalg.eig(cov_matrix) | |
| 296 | + | print("\nEigen Values\n",eig_val) | |
| 297 | + | print("Eigen Vectors\n",eig_vect) | |
| 298 | + | ||
| 299 | + | pc = eig_vect[:,[0, 2]] | |
| 300 | + | pc=pc.T | |
| 301 | + | print("\nTop 2 Principal Components:\n", pc) | |
| 302 | + | ||
| 303 | + | trans_df = np.dot(df1[:,0:3], pc.T) | |
| 304 | + | print(" \nNew Transform\n",trans_df) | |
| 305 | + | ||
| 306 | + | Dataf=pd.DataFrame(trans_df,columns=['PC1','PC2']) | |
| 307 | + | Dataf['GTU Marks']=df['GTU'].values | |
| 308 | + | print(Dataf) | |
| 309 | + | ||
| 310 | + | OUTPUT: | |
| 311 | + | Mid_Sem IQ HSC GTU | |
| 312 | + | 0 35 110 78 70 | |
| 313 | + | 1 42 125 85 88 | |
| 314 | + | 2 28 100 72 65 | |
| 315 | + | 3 45 130 90 92 | |
| 316 | + | 4 38 115 80 78 | |
| 317 | + | ... | |
| 318 | + | [15 rows x 4 columns] | |
| 319 | + | ||
| 320 | + | [[-0.09736702 -0.20785572 -0.20441405] | |
| 321 | + | [ 1.03858157 1.20934235 0.81765621] | |
| 322 | + | [-1.23331562 -1.15265443 -1.08047428] | |
| 323 | + | [ 1.52541669 1.68174171 1.5477064 ] | |
| 324 | + | ... | |
| 325 | + | [-0.74648051 -0.96369469 -0.93446424]] | |
| 326 | + | ||
| 327 | + | COVARIANCE MATRIX: | |
| 328 | + | [[1.07142857 1.0614152 1.05676449] | |
| 329 | + | [1.0614152 1.07142857 1.05019437] | |
| 330 | + | [1.05676449 1.05019437 1.07142857]] | |
| 331 | + | ||
| 332 | + | Eigen Values | |
| 333 | + | [3.18368463 0.00878971 0.02181137] | |
| 334 | + | ||
| 335 | + | Eigen Vectors | |
| 336 | + | [[-0.57842869 -0.7974863 -0.17156877] | |
| 337 | + | [-0.57723546 0.54876897 -0.60469152] | |
| 338 | + | [-0.57638483 0.25073535 0.77776109]] | |
| 339 | + | ||
| 340 | + | Top 2 Principal Components: | |
| 341 | + | [[-0.57842869 -0.57723546 -0.57638483] | |
| 342 | + | [-0.17156877 -0.60469152 0.77776109]] | |
| 343 | + | ||
| 344 | + | New Transform | |
| 345 | + | [[ 0.29412273 -0.01659157] | |
| 346 | + | [-1.77010531 -0.27352604] | |
| 347 | + | [ 2.00150714 0.06824795] | |
| 348 | + | [-2.74518022 -0.074903 ] | |
| 349 | + | ... | |
| 350 | + | [ 1.5266755 -0.01597918]] | |
| 351 | + | ||
| 352 | + | PC1 PC2 GTU Marks | |
| 353 | + | 0 0.294123 -0.016592 70 | |
| 354 | + | 1 -1.770105 -0.273526 88 | |
| 355 | + | 2 2.001507 0.068248 65 | |
| 356 | + | 3 -2.745180 -0.074903 92 | |
| 357 | + | 4 -0.428478 -0.158651 78 | |
| 358 | + | ... | |
| 359 | + | [15 rows x 3 columns] | |
| 360 | + | ||
| 361 | + | ||
| 362 | + | =============================================================================== | |
| 363 | + | PRACTICAL 3: DECISION TREE CLASSIFIER | |
| 364 | + | (Classification with evaluation using precision, recall, and F1-score) | |
| 365 | + | =============================================================================== | |
| 366 | + | ||
| 367 | + | CODE: | |
| 368 | + | import pandas as pd | |
| 369 | + | from sklearn.metrics import confusion_matrix | |
| 370 | + | from sklearn.tree import DecisionTreeClassifier | |
| 371 | + | from sklearn.metrics import accuracy_score | |
| 372 | + | from sklearn.metrics import classification_report | |
| 373 | + | ||
| 374 | + | data = pd.read_csv("decesiontree.csv") | |
| 375 | + | print(data) | |
| 376 | + | ||
| 377 | + | cleanup_nums = {"Age": {"Youth": 0, "Middle": 1, "Senior" : 2}, | |
| 378 | + | "Income": {"Low": 0, "Medium": 1, "High" : 2 }, | |
| 379 | + | "Student": {"No": 0, "Yes":1 }, | |
| 380 | + | "Credit Rating": { "Fair": 1, "Excellent" : 2 }, | |
| 381 | + | "Buys-Computer": {"No": 0, "Yes": 1}} | |
| 382 | + | data.replace(cleanup_nums, inplace = True) | |
| 383 | + | print(data) | |
| 384 | + | ||
| 385 | + | predictors = data.iloc[:, 1:5] | |
| 386 | + | target = data.iloc[:, 5] | |
| 387 | + | ||
| 388 | + | dtree_entropy=DecisionTreeClassifier(criterion="entropy",random_state=100, | |
| 389 | + | max_depth=3,min_samples_leaf=5) | |
| 390 | + | ||
| 391 | + | OUTPUT: | |
| 392 | + | Item no Age Income Student Credit Rating Buys-Computer | |
| 393 | + | 0 1 Youth High No Fair No | |
| 394 | + | 1 2 Youth High No Excellent No | |
| 395 | + | 2 3 Middle High No Fair Yes | |
| 396 | + | 3 4 Senior Medium No Fair Yes | |
| 397 | + | 4 5 Senior Low Yes Fair Yes | |
| 398 | + | ... | |
| 399 | + | [14 rows x 6 columns] | |
| 400 | + | ||
| 401 | + | Item no Age Income Student Credit Rating Buys-Computer | |
| 402 | + | 0 1 0 2 0 1 0 | |
| 403 | + | 1 2 0 2 0 2 0 | |
| 404 | + | 2 3 1 2 0 1 1 | |
| 405 | + | 3 4 2 1 0 1 1 | |
| 406 | + | 4 5 2 0 1 1 1 | |
| 407 | + | ... | |
| 408 | + | [14 rows x 6 columns] | |
| 409 | + | ||
| 410 | + | ||
| 411 | + | =============================================================================== | |
| 412 | + | PRACTICAL 4: NAIVE BAYES CLASSIFIER | |
| 413 | + | (Probabilistic classification using Gaussian Naive Bayes) | |
| 414 | + | =============================================================================== | |
| 415 | + | ||
| 416 | + | CODE: | |
| 417 | + | import pandas as pd | |
| 418 | + | from sklearn import preprocessing | |
| 419 | + | from sklearn.naive_bayes import GaussianNB | |
| 420 | + | ||
| 421 | + | fl = "Naive_Bayesian.csv" | |
| 422 | + | df = pd.read_csv(fl, index_col = "Item no") | |
| 423 | + | print (df) | |
| 424 | + | ||
| 425 | + | dfCol = df.columns | |
| 426 | + | print ("df columns: ", dfCol) | |
| 427 | + | ndfCol = df.shape[1] | |
| 428 | + | ndfRow = df.shape[0] | |
| 429 | + | ||
| 430 | + | feature = [[]*ndfRow for x in range(ndfCol)] | |
| 431 | + | for i in range(ndfCol): | |
| 432 | + | feature[i] = list(df[dfCol[i]]) | |
| 433 | + | print (dfCol[i],":", feature[i]) | |
| 434 | + | ||
| 435 | + | le = preprocessing.LabelEncoder() | |
| 436 | + | ||
| 437 | + | feature0 = [[]*ndfRow for x in range(ndfCol)] | |
| 438 | + | for i in range(ndfCol): | |
| 439 | + | feature0[i] = le.fit_transform(feature[i]) | |
| 440 | + | print(dfCol[i], "encoded:", feature0[i]) | |
| 441 | + | ||
| 442 | + | features = [] | |
| 443 | + | for i in range(ndfRow): | |
| 444 | + | xlst = [] | |
| 445 | + | for j in range(ndfCol-1): | |
| 446 | + | xlst.append(feature0[j][i]) | |
| 447 | + | xtup = tuple(xlst) | |
| 448 | + | features.append(xtup) | |
| 449 | + | ||
| 450 | + | print ("features:", features) | |
| 451 | + | ||
| 452 | + | label = feature0[:][ndfCol-1] | |
| 453 | + | label = [label[i]+1 for i in range(ndfRow)] | |
| 454 | + | print ("label:", label) | |
| 455 | + | ||
| 456 | + | model = GaussianNB() | |
| 457 | + | model.fit(features, label) | |
| 458 | + | print ("model:", model) | |
| 459 | + | ||
| 460 | + | ptStr = input ("Enter unknown data (separated by ,) excluding Index Column: ") | |
| 461 | + | ptLst = [int(x) for x in ptStr.split(',')] | |
| 462 | + | point1 = [ptLst] | |
| 463 | + | print ("Unknown data (sample):", point1) | |
| 464 | + | predicted= model.predict(point1) | |
| 465 | + | print ("Class for Point:", point1, "is:", predicted) | |
| 466 | + | ||
| 467 | + | OUTPUT (with input: 0,1,1,0): | |
| 468 | + | Age Income Student Credit Rating Buys-Computer | |
| 469 | + | Item no | |
| 470 | + | 1 Youth High No Fair No | |
| 471 | + | 2 Youth High No Excellent No | |
| 472 | + | 3 Middle High No Fair Yes | |
| 473 | + | 4 Senior Medium No Fair Yes | |
| 474 | + | ... | |
| 475 | + | [14 rows x 5 columns] | |
| 476 | + | ||
| 477 | + | df columns: Index(['Age', 'Income', 'Student', 'Credit Rating', 'Buys-Computer'], dtype='object') | |
| 478 | + | ||
| 479 | + | Age : ['Youth', 'Youth', 'Middle', 'Senior', 'Senior', ...] | |
| 480 | + | Income : ['High', 'High', 'High', 'Medium', 'Low', ...] | |
| 481 | + | Student : ['No', 'No', 'No', 'No', 'Yes', ...] | |
| 482 | + | Credit Rating : ['Fair', 'Excellent', 'Fair', 'Fair', 'Fair', ...] | |
| 483 | + | Buys-Computer : ['No', 'No', 'Yes', 'Yes', 'Yes', ...] | |
| 484 | + | ||
| 485 | + | Age encoded: [2 2 0 1 1 0 1 2 2 1 2 0 0 1] | |
| 486 | + | Income encoded: [0 0 0 2 1 1 1 2 1 2 2 2 0 2] | |
| 487 | + | Student encoded: [0 0 0 0 1 1 1 0 1 1 1 0 1 1] | |
| 488 | + | Credit Rating encoded: [1 0 1 1 1 0 0 1 1 1 0 0 1 0] | |
| 489 | + | Buys-Computer encoded: [0 0 1 1 1 0 1 0 1 1 1 1 1 0] | |
| 490 | + | ||
| 491 | + | features: [(2, 0, 0, 1), (2, 0, 0, 0), (0, 0, 0, 1), (1, 2, 0, 1), | |
| 492 | + | (1, 1, 1, 1), (0, 1, 1, 0), ...] | |
| 493 | + | ||
| 494 | + | label: [1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1] | |
| 495 | + | ||
| 496 | + | model: GaussianNB() | |
| 497 | + | ||
| 498 | + | Enter unknown data (separated by ,) excluding Index Column: | |
| 499 | + | Unknown data (sample): [[0, 1, 1, 0]] | |
| 500 | + | Class for Point: [[0, 1, 1, 0]] is: [2] | |
| 501 | + | ||
| 502 | + | ||
| 503 | + | =============================================================================== | |
| 504 | + | PRACTICAL 5: LINEAR REGRESSION | |
| 505 | + | (Predicting continuous values with evaluation using MSE and R² score) | |
| 506 | + | =============================================================================== | |
| 507 | + | ||
| 508 | + | CODE: | |
| 509 | + | import pandas as pd | |
| 510 | + | import matplotlib.pyplot as plt | |
| 511 | + | from sklearn.linear_model import LinearRegression | |
| 512 | + | from sklearn.model_selection import train_test_split | |
| 513 | + | import numpy as np | |
| 514 | + | from sklearn import metrics | |
| 515 | + | ||
| 516 | + | dataset=pd.read_csv("LinearRegression.csv") | |
| 517 | + | print(dataset) | |
| 518 | + | ||
| 519 | + | x=dataset.iloc[:,0:1] | |
| 520 | + | y=dataset.iloc[:,1] | |
| 521 | + | y=y.replace(['Yes','No'],[1,0]) | |
| 522 | + | ||
| 523 | + | print(y) | |
| 524 | + | X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.01, random_state=123) | |
| 525 | + | ||
| 526 | + | model = LinearRegression() | |
| 527 | + | model = model.fit(X_train, y_train) | |
| 528 | + | y_pred = model.predict(X_test) | |
| 529 | + | y_pred_val=model.predict([[18]]) | |
| 530 | + | print(y_pred_val) | |
| 531 | + | ||
| 532 | + | if(y_pred_val > 0.5): | |
| 533 | + | print("Yes") | |
| 534 | + | else: | |
| 535 | + | print("No") | |
| 536 | + | ||
| 537 | + | plt.scatter(X_train,y_train, color = 'red') | |
| 538 | + | plt.plot(X_train, model.predict(X_train)) | |
| 539 | + | ||
| 540 | + | print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) | |
| 541 | + | print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) | |
| 542 | + | print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) | |
| 543 | + | ||
| 544 | + | OUTPUT: | |
| 545 | + | Outside Temperature \nCelcius Wear a\n jacket | |
| 546 | + | 0 30 No | |
| 547 | + | 1 25 No | |
| 548 | + | 2 20 No | |
| 549 | + | 3 15 Yes | |
| 550 | + | 4 10 Yes | |
| 551 | + | ||
| 552 | + | 0 0 | |
| 553 | + | 1 0 | |
| 554 | + | 2 0 | |
| 555 | + | 3 1 | |
| 556 | + | 4 1 | |
| 557 | + | Name: Wear a\n jacket, dtype: int64 | |
| 558 | + | ||
| 559 | + | [0.54285714] | |
| 560 | + | Yes | |
| 561 | + | ||
| 562 | + | Mean Absolute Error: 0.14285714285714302 | |
| 563 | + | Mean Squared Error: 0.02040816326530617 | |
| 564 | + | Root Mean Squared Error: 0.14285714285714302 | |
| 565 | + | ||
| 566 | + | ||
| 567 | + | =============================================================================== | |
| 568 | + | PRACTICAL 6: K-NEAREST NEIGHBORS (KNN) CLASSIFIER | |
| 569 | + | (Classification using different k values with accuracy evaluation) | |
| 570 | + | =============================================================================== | |
| 571 | + | ||
| 572 | + | CODE: | |
| 573 | + | import pandas as pd | |
| 574 | + | from sklearn.model_selection import train_test_split | |
| 575 | + | from sklearn.preprocessing import StandardScaler | |
| 576 | + | from sklearn.neighbors import KNeighborsClassifier | |
| 577 | + | from sklearn.metrics import accuracy_score, classification_report | |
| 578 | + | ||
| 579 | + | df = pd.read_csv("knn.csv") | |
| 580 | + | df = df[df['Item no.'].notna()] | |
| 581 | + | print("Dataset Preview:") | |
| 582 | + | print(df.head()) | |
| 583 | + | ||
| 584 | + | X = df.iloc[:, 1:4] | |
| 585 | + | y = df.iloc[:, 4] | |
| 586 | + | print("INPUT\n",X) | |
| 587 | + | print("OUTPUT\n",y) | |
| 588 | + | ||
| 589 | + | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
| 590 | + | ||
| 591 | + | scaler = StandardScaler() | |
| 592 | + | X_train = scaler.fit_transform(X_train) | |
| 593 | + | X_test = scaler.transform(X_test) | |
| 594 | + | print("XTRAIN\n",X_train) | |
| 595 | + | print("X_TEST\n",X_test) | |
| 596 | + | ||
| 597 | + | knn = KNeighborsClassifier(n_neighbors=3) | |
| 598 | + | knn.fit(X_train, y_train) | |
| 599 | + | ||
| 600 | + | y_pred = knn.predict(X_test) | |
| 601 | + | print("PREDICTION : \n",y_pred) | |
| 602 | + | ||
| 603 | + | print("\nAccuracy:", accuracy_score(y_test, y_pred)) | |
| 604 | + | print("\nClassification Report:") | |
| 605 | + | print(classification_report(y_test, y_pred)) | |
| 606 | + | ||
| 607 | + | OUTPUT: | |
| 608 | + | Dataset Preview: | |
| 609 | + | Item no. Temp Humidity Wind Speed Play ... | |
| 610 | + | 0 1.0 85.0 85.0 12.0 No ... | |
| 611 | + | 1 2.0 80.0 90.0 9.0 No ... | |
| 612 | + | 2 3.0 83.0 86.0 4.0 Yes ... | |
| 613 | + | 3 4.0 70.0 96.0 3.0 Yes ... | |
| 614 | + | 4 5.0 68.0 80.0 5.0 Yes ... | |
| 615 | + | ||
| 616 | + | INPUT | |
| 617 | + | Temp Humidity Wind Speed | |
| 618 | + | 0 85.0 85.0 12.0 | |
| 619 | + | 1 80.0 90.0 9.0 | |
| 620 | + | 2 83.0 86.0 4.0 | |
| 621 | + | 3 70.0 96.0 3.0 | |
| 622 | + | 4 68.0 80.0 5.0 | |
| 623 | + | ... | |
| 624 | + | [14 rows x 3 columns] | |
| 625 | + | ||
| 626 | + | OUTPUT | |
| 627 | + | 0 No | |
| 628 | + | 1 No | |
| 629 | + | 2 Yes | |
| 630 | + | 3 Yes | |
| 631 | + | 4 Yes | |
| 632 | + | ... | |
| 633 | + | Name: Play, dtype: object | |
| 634 | + | ||
| 635 | + | XTRAIN | |
| 636 | + | [[ 1.37690922 -0.53048047 -0.46006855] | |
| 637 | + | [-1.22885447 -0.99359834 2.25104967] | |
| 638 | + | [-0.57741354 -0.99359834 -0.46006855] | |
| 639 | + | [ 1.70262968 0.48837885 -0.64080976] | |
| 640 | + | ... | |
| 641 | + | [-1.3917147 -1.45671621 -1.00229219]] | |
| 642 | + | ||
| 643 | + | X_TEST | |
| 644 | + | [[ 0.39974784 -0.0673626 -1.00229219] | |
| 645 | + | [-0.08883285 0.85887314 -0.64080976] | |
| 646 | + | [ 2.02835014 0.39575527 0.80511996]] | |
| 647 | + | ||
| 648 | + | PREDICTION : | |
| 649 | + | ['Yes' 'Yes' 'Yes'] | |
| 650 | + | ||
| 651 | + | Accuracy: 0.6666666666666666 | |
| 652 | + | ||
| 653 | + | Classification Report: | |
| 654 | + | precision recall f1-score support | |
| 655 | + | ||
| 656 | + | No 0.00 0.00 0.00 1 | |
| 657 | + | Yes 0.67 1.00 0.80 2 | |
| 658 | + | ||
| 659 | + | accuracy 0.67 3 | |
| 660 | + | macro avg 0.33 0.50 0.40 3 | |
| 661 | + | weighted avg 0.44 0.67 0.53 3 | |
| 662 | + | ||
| 663 | + | ||
| 664 | + | =============================================================================== | |
| 665 | + | PRACTICAL 7: MULTIPLE LINEAR REGRESSION | |
| 666 | + | (Prediction using multiple features with R² score and RMSE evaluation) | |
| 667 | + | =============================================================================== | |
| 668 | + | ||
| 669 | + | CODE: | |
| 670 | + | import pandas as pd | |
| 671 | + | import numpy as np | |
| 672 | + | import matplotlib.pyplot as plt | |
| 673 | + | from sklearn.linear_model import LinearRegression | |
| 674 | + | from sklearn.model_selection import train_test_split | |
| 675 | + | from sklearn.metrics import r2_score | |
| 676 | + | ||
| 677 | + | Data=pd.read_excel("student_data1.xlsx") | |
| 678 | + | print(Data) | |
| 679 | + | ||
| 680 | + | X=Data.iloc[:,:2] | |
| 681 | + | y=Data.iloc[:,-1:] | |
| 682 | + | print(X) | |
| 683 | + | print(y) | |
| 684 | + | ||
| 685 | + | X_train,X_test,y_train,y_test=train_test_split(X, y, test_size=0.2,random_state=42) | |
| 686 | + | ||
| 687 | + | print("Xtrain\n",X_train) | |
| 688 | + | print("XTEST\n",y_test) | |
| 689 | + | ||
| 690 | + | model = LinearRegression() | |
| 691 | + | model.fit(X_train.to_numpy(), y_train) | |
| 692 | + | ||
| 693 | + | y_pred = model.predict([[8.6,125]]) | |
| 694 | + | print("model prediction on Ytest:\n",y_pred.round(2)) | |
| 695 | + | ||
| 696 | + | print("M= ",model.coef_.round(2)) | |
| 697 | + | print("b= ",model.intercept_.round(2)) | |
| 698 | + | ||
| 699 | + | OUTPUT: | |
| 700 | + | CGPA IQ Placement (LPA) | |
| 701 | + | 0 7.5 110 6.5 | |
| 702 | + | 1 8.0 120 7.0 | |
| 703 | + | 2 8.5 125 8.2 | |
| 704 | + | 3 9.0 130 9.1 | |
| 705 | + | 4 6.5 100 5.0 | |
| 706 | + | ... | |
| 707 | + | [10 rows x 3 columns] | |
| 708 | + | ||
| 709 | + | CGPA IQ | |
| 710 | + | 0 7.5 110 | |
| 711 | + | 1 8.0 120 | |
| 712 | + | 2 8.5 125 | |
| 713 | + | 3 9.0 130 | |
| 714 | + | 4 6.5 100 | |
| 715 | + | ... | |
| 716 | + | [10 rows x 2 columns] | |
| 717 | + | ||
| 718 | + | Placement (LPA) | |
| 719 | + | 0 6.5 | |
| 720 | + | 1 7.0 | |
| 721 | + | 2 8.2 | |
| 722 | + | 3 9.1 | |
| 723 | + | 4 5.0 | |
| 724 | + | ... | |
| 725 | + | [10 rows x 1 columns] | |
| 726 | + | ||
| 727 | + | Xtrain | |
| 728 | + | CGPA IQ | |
| 729 | + | 5 7.0 105 | |
| 730 | + | 0 7.5 110 | |
| 731 | + | 7 8.8 128 | |
| 732 | + | 2 8.5 125 | |
| 733 | + | ... | |
| 734 | + | [8 rows x 2 columns] | |
| 735 | + | ||
| 736 | + | XTEST | |
| 737 | + | Placement (LPA) | |
| 738 | + | 8 5.2 | |
| 739 | + | 1 7.0 | |
| 740 | + | ||
| 741 | + | model prediction on Ytest: | |
| 742 | + | [[8.45]] | |
| 743 | + | ||
| 744 | + | M= [[1.32 0.03]] | |
| 745 | + | b= [-6.51] | |
| 746 | + | ||
| 747 | + | ||
| 748 | + | =============================================================================== | |
| 749 | + | PRACTICAL 8: SINGULAR VALUE DECOMPOSITION (SVD) | |
| 750 | + | (Dimensionality Reduction using SVD - Manual & Sklearn Implementation) | |
| 751 | + | =============================================================================== | |
| 752 | + | ||
| 753 | + | ------- 8.1: SVD MANUAL IMPLEMENTATION (svd.py) ------- | |
| 754 | + | ||
| 755 | + | CODE: | |
| 756 | + | import pandas as pd | |
| 757 | + | import numpy as np | |
| 758 | + | ||
| 759 | + | df = pd.read_excel("student_dataset.xlsx") | |
| 760 | + | A = df.iloc[:, :3].to_numpy() | |
| 761 | + | A_mean = A - np.mean(A, axis=0) | |
| 762 | + | ||
| 763 | + | U, X, V_T = np.linalg.svd(A_mean) | |
| 764 | + | k = 2 | |
| 765 | + | U_k = U[:, :k] | |
| 766 | + | S_k = np.diag(X[:k]) | |
| 767 | + | ||
| 768 | + | final_data1 = np.dot(U_k, S_k) | |
| 769 | + | print("Reduced Data:\n", final_data1) | |
| 770 | + | ||
| 771 | + | explained_variance = (X[:k]**2) / np.sum(X**2) | |
| 772 | + | print("Explained variance by top 2 components:", explained_variance) | |
| 773 | + | ||
| 774 | + | reduced_df = pd.DataFrame(final_data1, columns=["PC1", "PC2"]) | |
| 775 | + | reduced_df['GTU'] = df['GTU'].values | |
| 776 | + | print(reduced_df) | |
| 777 | + | ||
| 778 | + | OUTPUT: | |
| 779 | + | Reduced Data: | |
| 780 | + | [[ -2.60622042 0.08983428] | |
| 781 | + | [ 15.20533711 -2.22651162] | |
| 782 | + | [-16.15266994 0.28962606] | |
| 783 | + | [ 22.72992624 -0.77843972] | |
| 784 | + | [ 3.46193108 -0.87192496] | |
| 785 | + | ... | |
| 786 | + | [-12.83777493 0.27648847]] | |
| 787 | + | ||
| 788 | + | Explained variance by top 2 components: [0.99132896 0.00672569] | |
| 789 | + | ||
| 790 | + | PC1 PC2 GTU | |
| 791 | + | 0 -2.606220 0.089834 70 | |
| 792 | + | 1 15.205337 -2.226512 88 | |
| 793 | + | 2 -16.152670 0.289626 65 | |
| 794 | + | 3 22.729926 -0.778440 92 | |
| 795 | + | 4 3.461931 -0.871925 78 | |
| 796 | + | ... | |
| 797 | + | [15 rows x 3 columns] | |
| 798 | + | ||
| 799 | + | ------- 8.2: SVD USING SKLEARN (svd2.py) ------- | |
| 800 | + | ||
| 801 | + | CODE: | |
| 802 | + | import pandas as pd | |
| 803 | + | import numpy as np | |
| 804 | + | from sklearn.decomposition import TruncatedSVD | |
| 805 | + | from sklearn.preprocessing import StandardScaler | |
| 806 | + | ||
| 807 | + | df = pd.read_excel("student_dataset.xlsx") | |
| 808 | + | X = df.iloc[:, :3] | |
| 809 | + | ||
| 810 | + | scaler = StandardScaler() | |
| 811 | + | X_scaled = scaler.fit_transform(X) | |
| 812 | + | ||
| 813 | + | svd = TruncatedSVD(n_components=2) | |
| 814 | + | X_reduced = svd.fit_transform(X_scaled) | |
| 815 | + | print(X_reduced) | |
| 816 | + | ||
| 817 | + | Dataf=pd.DataFrame(X_reduced,columns=['PC1','PC2']) | |
| 818 | + | Dataf['GTU Marks']=df['GTU'].values | |
| 819 | + | print(Dataf) | |
| 820 | + | ||
| 821 | + | print("Singular values:", svd.singular_values_) | |
| 822 | + | print("Explained variance:", svd.explained_variance_) | |
| 823 | + | print("Explained variance ratio:", svd.explained_variance_ratio_) | |
| 824 | + | print("Total variance captured:", svd.explained_variance_ratio_.sum()) | |
| 825 | + | ||
| 826 | + | OUTPUT: | |
| 827 | + | [[-0.29412273 -0.01659157] | |
| 828 | + | [ 1.77010531 -0.27352604] | |
| 829 | + | [-2.00150714 0.06824795] | |
| 830 | + | [ 2.74518022 -0.074903 ] | |
| 831 | + | [ 0.42847827 -0.1586513 ] | |
| 832 | + | ... | |
| 833 | + | [-1.5266755 -0.01597918]] | |
| 834 | + | ||
| 835 | + | PC1 PC2 GTU Marks | |
| 836 | + | 0 -0.294123 -0.016592 70 | |
| 837 | + | 1 1.770105 -0.273526 88 | |
| 838 | + | 2 -2.001507 0.068248 65 | |
| 839 | + | 3 2.745180 -0.074903 92 | |
| 840 | + | 4 0.428478 -0.158651 78 | |
| 841 | + | ... | |
| 842 | + | [15 rows x 3 columns] | |
| 843 | + | ||
| 844 | + | Singular values: [6.67619539 0.55259316] | |
| 845 | + | Explained variance: [2.97143899 0.02035728] | |
| 846 | + | Explained variance ratio: [0.99047966 0.00678576] | |
| 847 | + | Total variance captured: 0.997265423131314 | |
| 848 | + | ||
| 849 | + | ||
| 850 | + | =============================================================================== | |
| 851 | + | END OF JOURNAL | |
| 852 | + | =============================================================================== | |
Novější
Starší